All posts tagged: wireless

Using cellular networks for drones

It might soon become common for drones to transport goods and people, monitor disaster zones, and bring various forms of relief to areas that are difficult to access. Which communication infrastructure is best suited to facilitate this? Researchers at the University of Klagenfurt have explored potential challenges associated with the use of traditional cellular networks.

UWB connectivity in industrial environments

The introduction of wireless connectivity in industrial environments promises a rapid and cost-effective reconfiguration of machines and sensors. A key question in this context is: Which wireless technology is best suited for industrial settings? Many of the prevalent technologies, like WiFi and ZigBee, do not meet the requirements of certain industrial applications in terms of data rate, power consumption, and robustness. The lack of alternatives capable of achieving a good balance between these conflicting goals impedes progress. This is why researchers from the University of Klagenfurt, Airbus, and Lakeside Labs investigate the use of ultra-wideband (UWB) communications for wireless connectivity in industrial environments. Interestingly, UWB is commonly used for localization but is not yet an option for communications. Experiments with IEEE 802.15.4-2011 UWB devices were conducted in two industrial scenarios, namely a large-size aircraft assembly hangar and a medium-size production hall. These measurements are the first ones reported for off-the-shelf UWB devices in such setting and shed light on the potential of UWB to support emerging industrial applications. Jorge F. Schmidt, a senior researcher in …

Bit error rate in Poisson networks

In mobile communication systems, like UMTS or WLAN, the transmissions of different mobile devices interfere with each other. For example, when a mobile device transmits signals to its base station, other mobile devices transmitting on the same frequency band cause interference at that base station, which in turn may result in decoding errors in the intended signal. This form of interference becomes more and more relevant with the increasing number of wireless devices, and defines what is known as an interference-limited network. The number of incorrectly decoded bits per unit time is the bit error rate in the network.