“Research and cultural diversity widened my horizons.”
Pasquale Grippa recently completed his doctorate in technical sciences. He spoke to us about his research focus—improving autonomous transport systems with the help of artificial intelligence.
Pasquale Grippa recently completed his doctorate in technical sciences. He spoke to us about his research focus—improving autonomous transport systems with the help of artificial intelligence.
Commercial drones usually come equipped with modest on-board computing power. Consequently, their speed and agility are somewhat limited when they use their cameras like eyes to navigate in space. Samira Hayat, a researcher at the Department of Information Technology, recently joined forces with colleagues from other departments and Deutsche Telekom to investigate the effects of offloading computation to the edge of the network (edge computing).
Scientists of the doctoral school “Networked Autonomous Aerial Vehicles” implemented a self-adaptive swarm of drones and showcased it in Klagenfurt’s new drone hall, one of the largest and most modern facilities of its kind.
It might soon become common for drones to transport goods and people, monitor disaster zones, and bring various forms of relief to areas that are difficult to access. Which communication infrastructure is best suited to facilitate this? Researchers at the University of Klagenfurt have explored potential challenges associated with the use of traditional cellular networks.
A workshop about communication in swarms took place in Klagenfurt in mid-July. Invited speakers and other experts discussed questions at the interface of robotics, distributed systems, and communication technology.
A panel on the next generation of mobile communication systems was held in Klagenfurt. Experts from two network operators, a chip vendor, and research institutions discussed the opportunities and challenges of 5G.
Wireless communications is essential for many applications with commercial drones. Omid Semiari interviewed Christian Bettstetter about this exciting topic at the interface of communications and robotics for the latest IEEE ComSoc TCCN newsletter.
This statement was the title of a TIME article, which was included in the magazine’s special report on “The Drone Age”. We asked Christian Bettstetter to tell us what today’s drones can do and what drone (swarms) are not yet capable of. One thing is certain: Our airspace is going to be much busier in the future.
Wherever several clocks tick simultaneously, it is tricky to get them all to display precisely the same time. This can be a challenge for drone swarms that are airborne together. To tackle this problem, young scientist Agata Barciś is developing new technologies.
What has travelled by road to reach us until now could be delivered by drones in the future. This has many advantages: Poor rural transport infrastructure or persistent congestion in large cities can be bypassed. In 2013, Amazon was among the first to announce the intention to deliver goods using small autonomous drones. But when might this technology truly become part of our daily lives? Drone researcher Pasquale Grippa provides some answers.