All posts tagged: self-organization

Robots that sync and swarm: A proof of concept in ROS 2

A unified mathematical model for synchronisation and swarming has been proposed recently. Each system entity, called “swarmalator”, coordinates its internal phase and location with the other entities in a way that these two attributes are mutually coupled. This paper realises and studies, for the first time, the concept of swarmalators in technical systems. We adapt and extend the original model for its use on mobile robots and implement it in the Robot Operating System 2 (ROS 2). Simulations and experiments with small robots demonstrate the feasibility of the model and show its potential to be applied in real-world systems. All types of space-time patterns achieved in theory can be reproduced in practice. Applications can be found in monitoring, exploration, entertainment and art, among other domains.

A year in the life of Lakeside Labs

Did you observe that lately more and more tech products and business processes have features of self-organization? Almost every major car maker has been testing self-driving vehicles and is now introducing them to the market. The industry is crazy about “industry 4.0”—which promises self-organizing production with humans, machines, and products collaborating to make decentralized decisions. These are just two examples for the ongoing trend toward more self-* properties in tech systems, e.g., self-configuration, self-optimization, and self-healing. Such paradigm shift from centralized, managed systems to decentralized, autonomous systems has been the core of Lakeside Labs — the small nonprofit research company that I have been co-leading as scientific director — since its foundation in 2008. Lakeside Labs is a hub for science and innovation in self-organizing networked systems. A space for inspiration, creativity, and multidisciplinarity. At the time of our foundation several people believed that research on self-organization is a pure academic “exercise” by professors without any practical application of benefit to industry. This attitude has changed in the course of 2015/16 when many companies have increasingly become interested in …

Synchronization with phase rate correction

Synchronization algorithms based on the theory of pulse-coupled oscillators are evaluated on programmable radios. It is experimentally demonstrated that the stochastic nature of coupling is a key ingredient for convergence to synchrony. We propose a distributed algorithm for automatic phase rate equalization and show that synchronization precisions below one microsecond are possible.

Achieving consensus in networks with disturbances

The problem of finding a consensus in a group of people occurs in many social contexts. In a similar way, distributed algorithms for consensus play an important role in networked computing and communication systems if centralized decision making is difficult or impossible. Each entity in such a system processes only local information obtained from its neighbors and ideally performs only simple computations. Despite this simplicity, the process of consensus building should be robust against different types of disturbance, such as faulty entities, noise, and communication errors. A research team with members from Klagenfurt and Genoa has now analyzed the robustness of a special class of consensus algorithms, namely binary consensus, in which all entities must eventually agree on one out of two possible values. The motivation for their study is as follows: Some binary consensus algorithms that work well in noiseless and error-free networks—such as the well-known Gacs-Kurdyumov-Levin algorithm—show convergence problems in networks with disturbances. In turn, some other algorithms that are inferior in noiseless and error-free networks may actually improve their performance with the …

Programmable radio boards (WARP)

Pulse-coupled oscillator synchronization on FPGA radios

The mathematical modeling of pulse-coupled biological oscillators offers a fully decentralized and scalable approach for time synchronization. There is a broad spectrum of work on pulse-coupled oscillators in physics, biology, neuroscience, and other disciplines. The communications engineering community has been interested to transfer these results to the synchronization of nodes in wireless networks. A one-to-one transfer is infeasible due to the differences between wireless and biological communications. Several extensions and modifications are required with respect to delays, noise, multihop communications, and sync words.